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Epilepsy is a neurological disorder which is most widespread in human 
beings after stroke. Approximately 70% of epilepsy cases can be cured if 
diagnosed and medicated properly. Electro-encephalogram (EEG) 
signals are recording of brain electrical activity that provides insight 
information and understanding of the mechanisms inside the brain. 
Since epileptic seizures occur erratically, it is essential to develop a 
model for automatically detecting seizure from EEG recordings. In this 
paper a scheme was presented to detect the epileptic seizure 
implementing discrete wavelet transform (DWT) on EEG signal. DWT
decomposes the signal into approximation and detail coefficients, the 
ApEn values the coefficients were computed using pattern length (m= 2 
and 3) as an input feature for the Least square support vector machine 
(LS-SVM). The classification is done using LS-SVM and the results 
were compared using RBF and linear kernels. The proposed model has 
used the EEG data consisting of 5 classes and compared with using the 
approximate and detailed coefficients combined and individually. The 
classification accuracy of the LS-SVM using the RBF and Linear kernel
with ApEn using different cases is compared and it is found that the 
best accuracy percentage is 100% with RBF kernel.
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1. Introduction

Epilepsy in humans is an intrinsic brain pathol-
ogy and its major manifestation is epileptic seizures.
Epileptic seizures may affect partial part of the brain
(partial) or the whole cerebral mass (generalized),
seizures are recurrent with interictal period ranging
from several minutes to several days. Brain’s electri-
cal activity is measured through the electroencephalo-
gram (EEG) signal which is an effective tool for study-
ing functioning of brain and diagnosing epilepsy
[1]. EEG signals are a non-invasive testing method
that provides valuable details of distinct physiologi-
cal states of the brain. The data recorded usually are
of long duration and inspected by experts to analyze
the huge data recorded in the form of EEG signal to
detect epilepsy.

The advanced signal processing has enabled to
process and store the EEG signal digitally. The pro-

cessed EEG data is then feed as an input for the auto-
matic detection system to detect the traces of epilepsy.
The automatic system reduces the workload of neurol-
ogists by reducing the amount of effort and time re-
quired to detect the traces of epilepsy in the recorded
EEG signal. Automatic prediction and detection of
epilepsy from the EEG signal are developed using dif-
ferent signal processing techniques like frequency do-
main analysis, wavelet analysis, spike detection, and
non-linear methods. Gotman [2] has presented an au-
tomatic detection system for epilepsy by decompos-
ing the EEG signal into elementary waves. Srinivasan
et al., [3] has used time domain and frequency do-
main analysis to detect epilepsy the author has se-
lected five features out of which two features were
from frequency-domain and three features were from
time-domain. The author has used the recurrent neu-
ral network for detecting epilepsy and the neural net-
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work was trained and tested for the epileptic EEG sig-
nal with an accuracy of 99.6%, Keshri et al., [4] has
used the slope of the lines between each pair of two
consecutive data points (x1, y1) and (x2, y2) and feed
it into Deterministic Finite Automata and got the ac-
curacy level as high as 95.68%. Geva et al., [5] has
used wavelet analysis as both time and frequency do-
main view can be provided with the use of WT.

Various methods are available to detect and pre-
dict the epileptic seizure. Artificial Neural Network
(ANN) has been widely used for detecting the epilep-
tic spike [1, 6, 7, 8, 9]. Features extraction is an im-
portant aspect in the performance of ANN models as
the model is trained in and tested on these extracted
features. ApEn was proposed by Pincus [10] as a sta-
tistical parameter to measure the regularity of time
series data. ApEn is being predominantly used in the
electrocardiogram and other related heart rate data
analysis [11, 12, 13] as well as in the analysis of en-
docrine hormone [14]. It is the measure of regularity
as smaller value of ApEn depicts a high regularity and
higher value of ApEn depicts low regularity in time
series data [15]. Diambra et al., [16] has denoted that
parameter ApEn gives the valuable temporal localiza-
tion of a variety of epileptic activity. Elman, PNN and
SVM network for detection of epilepsy through ApEn
based feature with 100% overall accuracy. Hence, it
is an acceptable feature for automated detection of
epilepsy.

The Support Vector Machine (SVM) is a classier
method that performs classification tasks by con-
structing hyperplanes in a multidimensional space
which try to find a combination of samples to build
a plane maximizing the margin between two classes.
SVM is widely used in epileptic detection and predic-
tion [17] has used permutation entropy as a parame-
ter, as it drops during the seizure interval. The Burg
Burg AR coefficients has been used as an input for
SVM that shows accuracy of 99.56% [18].

In this paper an automated detection of the epilep-
tic seizure was discussed using LS-SVM comparing
two kernel functions RBF and linear. In this work EEG
signal were decomposed into six sub-bands namely
D1-D5 and A5 using DWT. The analysis of complex-
ity in the sub-bands are done by ApEn which acts as
an input feature for SVM. Experiments are done using
different cases having a different combination of EEG
data sets.

2. Proposed Method

In this paper there are four main tasks in sec-
tions 2.1) Clinical data 2.2) Preprocessing EEG data
through DWT to decompose into several sub-bands in
section 2.3) Feature extraction (ApEn) in section 2.4 )
Classification of EEG data using feature (ApEn). Fig-
ure 1 shows the proposed approach used in this paper.

2.1. Clinical data
The data set used in this paper is available in pub-

lic domain and is accessed online from the University

of Bonn, Germany which consists of five different data
set of EEG data [19]. The data used is artifact free EEG
time series data and is widespreadly used by the on-
going research on epilepsy [1, 3, 7, 15, 17, 20]. The
complete data set contains five sets marked as (A-E)
each set has 100 single channel EEG segment having
duration of 23.6-sec. Each segments of data are se-
lected and cut out after visual inspection for artifacts
from continuous mechanical EEG recordings with the
sampling frequency of 173.61 Hz with the band pass
settings of 0.53-40 Hz. The data contains three differ-
ent classes normal, epileptic background (pre-ictal),
and epileptic seizure (ictal). The normal EEG data
(A and B) was collected from five healthy volunteers.
The pre-ictal EEG data (C and D) was recorded dur-
ing the period when there were no traces of seizure
from five epileptic patients. The ictal EEG data (E)
was recorded during the epileptic seizure from the
same five patients. EEG signals were recorded from
128- channel amplifier using an average common ref-
erence and digitized at 173.61 Hz sampling rate and
12-bit A/D resolution. Figure 2 and Figure 3 shows
the specimen of an epileptic and normal signal.

Figure 1. Proposed Approach

Figure 2. Epileptic Signal

Figure 3. Normal Signal
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2.2. Discrete Wavelet Transform
Wavelet transform (WT) uses variable window

size, has well-known data compression and time-
frequency filtering capabilities. It provides a good lo-
cal representation of the signal in time as well as in the
frequency domain which makes it as an effective tool
for analyzing the signal and extracting features. The
wavelet transform looks for the spatial distribution
of singularities whereas fourier transform provides
a description of the overall regularity of signals [5].
WT captures transient features and localizes them in
time as well as frequency content and is widely used
in epileptic seizure detection [21, 22]. WT uses long
time windows for obtaining finer low-frequency reso-
lution as well as the short time windows for obtaining
high-frequency information. Thus, WT provides spe-
cific frequency information at low frequencies and
specific time information at high frequencies [23].

Discrete wavelet transform (DWT) x(t), is defined
as,

DWT (j,k) =
1
√ ∣∣∣2j ∣∣∣

∫ ∞
−∞
x(t)ψ

(
t − 2jk

2j

)
dt (1)

Where ψ, a and b are wavelet function called as
scaling and shifting parameters. The quadrature mir-
ror filters are used to realize the scheme by passing the
passing the signal through a series of low-pass (LP)
and high-pass (HP) filter [24] The out put from the
low pass filter is termed as . Approximation (A) and
output from the high pass filter id termed as detail
(D) coefficients. The figure illustrates the fifth level
wavelet decomposition of a signal showing the coeffi-
cients A1, D1, A2, D2, A3, D3, A4, D4, A5, and D5
.

In this model fifth-level wavelet decomposition
was performed on normal subjects data (A, B, C and
D) as well as on epileptic patient data (E) using
Daubechies order 4 wavelet (db4). The researchers
have found that db4 wavelet is most appropriate for
the analysis of epileptic EEG data [25]. The struc-
ture for the wavelet decomposition at each level with
its approximation and detail coefficients are shown in
Figure 4.

2.3. Approximate entropy (ApEn)
Approximate entropy is a statistical feature for quan-
tifying regularity and complexity in a time-series data
[10]. ApEn is a non-negative number and has been
successfully applied in the field of pattern recogni-
tion. ApEn have potential application throughout
medicine and prominently in ECG and EEG [14].The
following steps determine the value of ApEn [1, 8, 26,
27, 28].

1. The data set contains N data points let it be
A=[a(1), a(2), . . . , a(N-m+1)].

2. Let a(i) be a subsequence of A such that a(i)
=[a(i), a(i+1), a(i+2), . . . , a(i+m-1)] for 1 ≤
i ≤N −m+ 1, m is the number of samples used

3. Denote the distance between A(i) and A(j) by
d[A(i), A(j)]=

max
k=0,...,m−1

(| a(i + 1)− a(j + 1) |) (2)

4. For a given A(i), number of j is counted as (j =
1, ...,N −m + 1, j , i) such that d[A(i),A(j)] ≤ r
denoted as Mm(i) for i =N −m+ 1

Cmr (i) =
Mm(i)

(N −m+ 1)
, (3)

for i = 1, ...,N −m+ 1

5. For each Cmr (i) compute natural logarithm, and
average it over i

Φm(r) =
1

N −m+ 1

N−m+1∑
i=1

lnCmr (i) (4)

6. . Repeat step (1) to step (4) by increasing the di-
mension m to m+1 and find Cm+1

r (i) and Φm+1(r)

7. Finally ApEn is computed as

ApEn(m,r,N ) = Φm(r)−Φm+1(r) (5)

To compute the ApEn value of the signal of length
N two parameters length of the compared run m toler-
ance window r are specified. We have taken the value
of m=2 and 3 and r is in between 0.1 to 0.25 times the
standard deviation of data. In this model the ApEn
values of the approximate (A1-A5) and detailed coef-
ficients (D1-D5) are computed using the length of the
compared run (m), tolerance window (r) were set to
m= (2,3) and r= (0.2)*standard deviation of the data
to compute ApEn.

2.4. Support vector machine (SVM)
Support vector machine (SVM) has been used in

several EEG signal classification problems [17, 20]
and was first introduced in 1995. SVMs belong to the
family of kernel-based classifiers and are extremely
powerful classifiers. Linear as well as non-linear clas-
sification can be performed in SVM using different
kernel functions [29]. The approach of SVMs is to im-
plicitly map the classification data into higher dimen-
sion input space where a hyperplane separating the
classes may exist. The implicit mapping is achieved
through different Kernel functions. In the case of lin-
ear SVM to classify linearly separable data, the train-
ing data, {ai ,bi} for i = 1, ,m and yi ∈ {−1,1} then the
following decision function is determined by [18]:

D (x) = wtg(x) + y (6)

g(x)is a mapping function that maps x into l-
dimensional space, y is a scalar and w is the l-
dimensional vector. The decision function satisfies
the following condition to separate the data linearly:

bi
(
wtg (ai) + y

)
≥ 1 f or i = 1, ,M (7)
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There are infinite number of decision functions that
satisfy Eq.(8) for a linearly separable feature space.
The largest between the two classes are selected be-
tween the two classes. The margin given by D |x| / ‖w‖.
Let the margin is ρ then the following condition are
required to be satisfied:

biD (ai)
‖w‖

≥ ρ f or i = 1, ,M (8)

The product of ρ and ‖w‖is fixed

ρ ‖w‖ = 1 (9)

In order to obtain the maximum margin for the opti-
mal separating hyperplane, w̄ with the minimum ‖w‖
that satisfying Eq. (9) should be found from Eq. (10),
This provides optimization problem as follows. Mini-
mizing

1
2
wtw (10)

subject to the constraints: bi
(
wtg (ai) + y

)
≥

1 f or i = 1, ,M When training data are not lin-
early separable a slack variables is introduced ξi into
Eq. (8)

bi
(
wtg (ai) + y

)
≥ 1−ξi , ξi ≥ 0 f or i = 1, ,M (11)

To maximize the margin and minimize the train-
ing error the optimal separating hyperplane is deter-
mined and is achieved by minimizing,

1
2
wtw+

C
2

n∑
i=1

ξ
p
i (12)

subject to the constraints:bi
(
wtg (ai) + b

)
≥ 1 −

ξi , ξi ≥ 0 f or i = 1, ,M
The tradeoff between the maximum margin and

minimum classification error is determined by the pa-
rameter C.

2.5. Least squares support vector machines (LS-SVMs)
The LS-SVM are trained by minimizing

1
2
wtw+

C
2

n∑
i=1

ξ2
i (13)

subject to the equality constraints:

bi
(
wtg (ai) + y

)
= 1−ξi , ξi ≥ 0 f or i = 1, ,M (14)

The conventional SVM uses inequality constraints
where as in the LS-SVM equality constraints are used.
The equality constraint has reduced the complexity to
obtain the optimal solution by solving a set of linear
equations rather than solving a quadratic program-
ming problem. To derive the dual problem of Eqs.
(14) and (15) Lagrange multipliers are used

Q (w,y,α,ξ)

=
1
2
wtw+

C
2

n∑
i=1

ξ2
i −

M∑
i=1

αi
{
yi

(
wtg (ai) + y

)
− 1 + ξi

}
(15)

where α = (αi , ...,αM )t is Lagrange multipliers and
by differentiating the above equation with respect to
w,ξi ,b, and αi and equating the resulting equations to
zero the the conditions for optimality are determined
[30].

2.5.1. Kernel Function
Classically SVMs were designed to classify the

data in linear space, in the nonlinear space SVMs do
not preformed well to overcome this limitation on
SVMs, kernel approaches were developed. The fol-
lowing kernels are most commonly used [31].

1. Linear Kernels: k(a,a
′
) = (ata

′
);

2. Polynomial kernels: k(a,a
′
) = ((ata

′
) + 1)y where

d is a positive intege r

3. RBF kernels: k
(
a,a

′ )
= exp

(
−γ

∥∥∥a− a′∥∥∥)
To train a SVM classifier, the user has to deter-

mine a suitable kernel function, optimum hyper pa-
rameters, and proper regularization parameter. in
this paper we have used two kernels 1) Linear Ker-
nel and 2) RBF kernel. The goal to achieve optimum
hyper parameter and regularization parameter is ac-
complished by cross-validation technique. The cross-
validation technique can be used to select parameters.

2.6. Cross-Validation
Cross-validation is a validation technique used to

determine the quality of the classification model. It
partitions a sample data into different subsets such
that the analysis is initially implemented on a single
subset. The remaining subset(s) are kept for validat-
ing the result of initial analysis. The data subset used
for initial test is called as training set while the other
subsets are called as testing or validation sets [32].
In K-Fold cross validation data is partitioned into k
roughly equal size sets and each set is used once as a
test set while other remaining sets are used as train-
ing sets. For each k=1,2,...N, fit the model parameter
for other retained K-1 parts. The cross-validation pro-
cedure is repeated for K number of times using each
of the K set exactly once as validation data. The aver-
age of the K result obtained from the folds produces a
single estimation. In this paper, we have used 10-fold
scheme to achieve best performance efficiency.

2.7. Performance evaluation parameters
The performance of LS-SVM is estimated by using

the parametres, namely, sensitivity (SE), specificity
(SP) and overall accuracy (OA) defined as:

SE (%) =
TNCP
TNAP

∗ 100 (16)

Where TNCP denotes the count of correctly detected
positive patterns and TNAN denotes the count of ac-
tual positive pattern. The positive pattern represents
a detected seizure.

SP (%) =
TNCN
TNAN

∗ 100 (17)
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Where TNCN denotes the count of correctly detected
negative pattern and TNAN denotes the actual count
of negative pattern. The negative pattern represents a
detected non-seizure.

OA (%) =
TNCDP
TNAP P

∗ 100 (18)

Where TNCDP denotes the count of correctly detected
pattern and TNAP P denotes the count of applied pat-
terns [1].

3. Design of Experiment

The data is processed and the ApEn values of the
detailed and approximate coefficients are computed.
The design of experiment is done to make different
cases of the processed data-set and then compare the
results of different cases the cases are as follows

• Case 1: Data set A versus Data set E

• Case 2: Data set B versus Data set E

• Case 3: Data set C versus Data set E

• Case 4: Data set D versus Data set E

• Case 5: Data set A, C and D versus Data set E

• Case 6: Data set A, B, C and D versus Data set E

These cases are then modeled combining all the coef-
ficients A5 and D1-D5 in one set as an input to LS-
SVM and using different coefficients individually as
an input to LS-SVM. The results were analyzed using
all different cases and combinations and compared to
find the model providing the best efficiency.

4. Result and Discussion

The EEG data set is decomposed into different sub
bands by applying DWT using db4 wavelet having
5 level of decomposition shown in Figure 4. The
frequency ranges of these sub-bands are: A1(043.4
Hz), A2 (021.7Hz), A3 (010.85Hz), A4 (05.43 Hz),
A5 (02.70Hz), D1 (43.486.8 Hz), D2 (21.743.4 Hz),
D3 (10.8521.7Hz), D4(5.4310.85Hz) and D5 (2.705.43
Hz. ApEn values have been computed from the ap-
proximation and detail coefficients of each sub-bands
of entire 500 EEG epochs of five data sets A-E. Figure
5 and 6 shows the decomposition of EEG signal epoch
of data set A and E.

Figure 4. Decomposition of EEG signal using fifth level de-
composition

Figure 5. Wavelet decomposition of Epileptic signal (Data Set
E)

Figure 6. Wavelet decomposition of Normal Signal (Data Set
A )

The ApEn values of the approximate and detailed
coefficients are computed from the entire data set A-
E consisting 100 epochs having parameters m=(2,3)
and r=0.2*standard deviation of data set. ApEn value
of the detailed coefficient D1 from data set A, B which
were recorded from the surface of the scalp of the nor-
mal subject while they are in a relaxed and an awake
state with (Data Set A) eyes open and (Data set B) eyes
closed vs E are recorded from the epileptic subjects
through intracranial electrodes and having embedded
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dimension m=2 is shown in Figure7. The ApEn values
for data set A and B are higher than that of data set E
which means that the data set E is more ordered and
periodic than set A and B. Similarly Figure8 shows the
Apen values of detailed coefficient D1 from data set C
and D v/s data set E recorded from intracranial elec-
trodes having embedded dimension m=2. The ApEn
values of data set C and D are also higher than that of
data set E which that data set A,B,C,D are more com-
plex than data set E. Figure 7 and Figure 8 shows that
the complexity of the data set A recorded from nor-
mal subject and data set C which is recorded from
opposite to the epileptogenic zone are almost simi-
lar. ApEn values for embedded dimension m=3 are
shown in Figure 9 and Figure 10 depicting similar at-
tributes. The calculated value of ApEn got reduced
in this case than that of having embedded dimension
m=2 the curves and variation of data also got reduced.
Data set D and E are overlapping in both the case as
the data set is acquired within the epileptogenic zone.

Figure 7. Epileptic Signal

Figure 8. Normal Signal

In this paper SVM is implemented by using MAT-
LAB R2012b and LS-SVM toolbox [33].The input fea-
ture vector ApEn is divided into two parts training
data set 60% and testing 40%. The training data set

is used to train the SVM while testing data set is used
for verifying the accuracy of the trained SVM. For di-
viding the data set into training and testing part we
have used holdout method of cross validation. The
SVM is initialized by initlssvm function trained using
tunelssvm and trainlssvm function. The performance
parameters were tuned by using tunelssvm function
for regularization and kernel parameter (gam, sig2)
of LS-SVM [34].

Figure 9. Normal Signal

Figure 10. Normal Signal

The SVM algorithm is used with linear and Gaus-
sian radial basis kernel functions. Linear kernel func-
tion require gamma parameter for training the SVM.
SVM with rbf kernel function require gamma as well
as sigma parameter which has to be selected based
on training data. In this paper we have set gamma
∈ [0 − 1] for linear Kernel and gamma ∈ [0 − 10] for
rbf Kernel. The sigma parameter for rbf kernel is
∈ [0.7 − 9] using tunelssvm function. Each row of the
input data matrix is one observation and its column is
one feature.

The feature vector of each data set has 100 rows
(epochs) and 6 columns (D1-D5) and A5. Case (1− 4)
consist 200 observations, Case 5 consist of 400 obser-
vations, Case 6 consists 500 observations. The obser-
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Table 1. Statistical parameters with ApEn embedded dimension m=2 linear kernel

Embedding dimension (m=2) SVM (Linear)
Cases for seizure detection D1 D2 D3 D4 D5 A5
Case 1 (A-E) 0.9875 0.9375 0.9375 0.8625 0.55 0.95
Case 2 (B-E) 0.9375 0.9375 0.7375 0.7625 0.575 0.9125
Case 3 (C-E) 0.9875 0.975 0.875 0.6375 0.775 0.8625
Case 4 (D-E) 0.95 0.7875 0.7 0.5875 0.7625 0.825
Case 5 (ACD-E) 0.925 0.8875 0.8063 0.7562 0.7813 0.9063
Case 6 (ABCD-E) 0.94 0.89 0.83 0.81 0.805 0.925

Table 2. Statistical parameters with ApEn embedded dimention m=2 rbf

Embedding dimension (m=2) SVM (RBF)
Cases for seizure detection D1 D2 D3 D4 D5 A5
Case 1 (A-E) 0.9875 0.95 0.975 0.875 0.5875 0.9
Case 2 (B-E) 0.9625 0.9375 0.75 0.7875 0.6 0.9
Case 3 (C-E) 0.9875 0.9625 0.925 0.675 0.85 0.875
Case 4 (D-E) 0.925 0.75 0.7375 0.5875 0.825 0.875
Case 5 (ACD-E) 0.9437 0.9125 0.825 0.7688 0.8063 0.9063
Case 6 (ABCD-E) 0.945 0.91 0.84 0.84 0.815 0.93

vations are normalized by scaling between 0 and 1 and
then 60% and training and 40% of testing data is used
for training and testing SVM.

• The Case when D1-D5 and A5 is used individu-
ally as an Input to LS-SVM

The highest precision accuracy of for embedded
dimension m = 2 are found in cases 1 and 3 for de-
tailed coefficient D1 are 98.75% using linear kernel
and same for rbf kernel ie. in cases 1 and 3 are 98.75%.
The lowest accuracy was found to be 55% for case 1
for detailed coefficient D5 in linear kernel and 59%
for case 1 for detailed coefficient D5 in rbf kernel.
The results suggests that there is marginal differences
between the results of rbf and linear kernel but the
overall average efficiency remains same for both in
this cases as shown in the Table 1 and Table 2. The
highest accuracy of for embedded dimension m = 3 is
found in cases 1,2 and 3 for detailed coefficient D1 are
96.25% and for RBF kernel it is 98.75% for cases 1 and
3 for detailed coefficient D1. In this modeling RBF
kernel shows better results than that of linear kernel
the overall result is summarized in Table 3 and Table
4.

• The Case when D1-D5 and A5 is combined as an
Input to LS-SVM

The precision of the proposed system for embedded
dimension m = 2 with linear kernel is 100% which
is maximum and a lowest of 98:12% respectively for
cases 1, 3, 4, 5 and case 6. Similarly, the precision
of the proposed system for embedded dimension m =
2 with RBF kernel is 100% maximum and lowest of
99.50% respectively for cases 1-5 and case 6. The pre-
cision of the proposed system for embedded dimen-
sion m = 3 with linear kernel is 100% maximum and
a lowest of 97.0% respectively for cases 1, 3, 4 and case
6. Similarly, the precision of the proposed system for

embedded dimension m = 3 with RBF kernel is 100%
maximum and a lowest of 99.5% respectively for cases
1, 3 − 5 and case 6. It is clearly observed in the re-
sults summarized in Table 6 and Table 7 that RBF ker-
nel based automatic epileptic seizure detection sys-
tem gives better precision than linear kernel based
automatic epileptic seizure detection system. Table 5
presents the the comparison of results between the ex-
isting and the proposed method using same data set.

5. Conclusion and Future Scope

The least squares version of support vector ma-
chine classifiers is discussed in this paper. The
quadratic programming problem has been eased to
solving a set of linear equations with the use of equal-
ity constraint instead of inequality constraint. In this
paper we have modeled LS-SVM using EEG data set
with different combinations of input features as well
as changing the parameters of the ApEn. The results
suggest that the combination of detailed and approx-
imate coefficients ie. D1-D5 and A5 as an input to
classifier produces better results than using single fea-
ture D1 as a classification input. The kernel function
also plays significant role in the classifying the EEG
data set using LS-SVM and RBF kernel produces bet-
ter results than the linear kernel in this modelling.
The embedded dimension m for calculation the ApEn
is also significant ad this model suggests that at m=2
the classification system performs better than that at
m=3. The proposed approach can be deployed as a
quantitative measure for monitoring EEG signal as-
sociated with epilepsy. As an extension of the pro-
posed method, it would be challenging to scrutinize
the efficacy of the proposed method for other neuro-
logical disorders which uses brain signals for analyzes
such as Parkinson diseases etc [35]. Furthermore, it
would be interesting to analyze the learning effective-
ness of this model on other database. In this study, the
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Table 3. Statistical parameters with ApEn embedded dimention m=3 lin

Embedding dimension (m=3) SVM (Linear)
Cases for seizure detection D1 D2 D3 D4 D5 A5
Case 1 (A-E) 0.9625 0.9375 0.95 0.9875 0.7125 0.925
Case 2 (B-E) 0.9625 0.8875 0.775 0.7125 0.7375 0.875
Case 3 (C-E) 0.9625 0.95 0.8625 0.8 0.6375 0.875
Case 4 (D-E) 0.9125 0.8 0.7 0.7125 0.6 0.7625
Case 5 (ACD-E) 0.9 0.85 0.8 0.775 0.8063 0.875
Case 6 (ABCD-E) 0.905 0.885 0.85 0.83 0.84 0.895

Table 4. Statistical parameters with ApEn embedded dimention m=3 rbf

Embedding dimension (m=3) SVM (RBF)
Cases for seizure detection D1 D2 D3 D4 D5 A5
Case 1 (A-E) 0.9875 0.9375 0.9375 0.9875 0.7 0.925
Case 2 (B-E) 0.975 0.925 0.825 0.7875 0.7375 0.85
Case 3 (C-E) 0.9875 0.9625 0.875 0.8125 0.65 0.875
Case 4 (D-E) 0.9125 0.825 0.775 0.7375 0.65 0.7875
Case 5 (ACD-E) 0.9437 0.885 0.85 0.8438 0.8187 0.8938
Case 6 (ABCD-E) 0.95 0.91 0.85 0.83 0.845 0.895

Table 5. Comparison with Existing Models

Authors Year Method Cases Maximum OA %

Srinivasan et al. [3] 2005
Time and frequency domain features using
ANN Case 1 99.60

Srinivasan et al. [1] 2007 Approximate Entropy using ANN Case 1 100

Ocak [7] 2009 DWT and (ApEn)
Case 1
Case 9

99.60
96.65

Guo et al. [8] 2010 Discrete wavelet transform using ANN
Case 1
Case 9

99.85
98.27

Ubeyli [18] 2010 LS-SVM model-based method coefficients Case 1 99.56

Nicolaou et al [17] 2012 Permutation entropy using SVM

Case 1
Case 2
Case 3
Case 4

93.55
82.88
88.00
79.94

Kai et al. [36] 2014 Time-frequency image using SVM Case 1 99.125

Anindya et al. [37] 2016 Dual tree complex wavelet transform using SVM

Case 1
Case 3
Case 4
Case 9

100
100
100
100

Proposed Method
DWT based ApEn and Artificial
neural network, LS-SVM

Case1
Case2
Case3
Case4
Case5
Case6

100
100
100
100
100
99.5

Table 6. Results obtained for proposed model with embedded dimension m=2

Embedding dimension (m=2) SVM (Linear) SVM (RBF)
Cases for seizure detection SE SP OA SE SP OA
Case 1 (A-E) 1 1 1 1 1 1
Case 2 (B-E) 0.9722 1 0.9875 1 1 1
Case 3 (C-E) 1 1 1 1 1 1
Case 4 (D-E) 1 1 1 1 1 1
Case 5 (ACD-E) 1 0.9831 0.9875 1 1 1
Case 6 (ABCD-E) 0.9697 0.982 0.98 0.9756 1 0.995
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Table 7. Results obtained for proposed model with embedded dimension m=3

Embedding dimension (m=2) SVM (Linear) SVM (RBF)
Cases for seizure detection SE SP OA SE SP OA
Case 1 (A-E) 1 1 1 1 1 1
Case 2 (B-E) 0.9474 1 0.975 0.975 1 0.9875
Case 3 (C-E) 1 1 1 1 1 1
Case 4 (D-E) 1 1 1 1 1 1
Case 5 (ACD-E) 0.9524 0.9915 0.9812 1 1 1
Case 6 (ABCD-E) 0.9091 0.982 0.97 0.995 0.9939 0.995

proposed model has been tested on different datasets
from the same database.
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